Monday, 20 October 2008
Chandrayaan-1 Is Precursor For Future Space Missions
October 20, 2008
By Syed Akbar
Hyderabad, Oct 19: Chandrayaan-1 is more than a simple spacecraft designed to study the surface of the Moon. It is the most advanced mission to date to the Earth's only natural satellite and a precursor for future space missions including those to Mercury.
The European Space Agency, which is coordinating with the Indian Space Research Organisation, describes Chandrayaan-1 as "a champion in high-quality remote sensing" that will study the Moon in "great detail".
Chandrayaan-1 uses a wide range of electromagnetic wavelengths to analyse the lunar surface including its crust in high resolution. The latest equipment provides a deeper understanding of the origin, evolution and composition of the Moon.
The Indian lunar mission will also drop a probe onto the surface, to test the
properties of the surface upon impact. According to ESA's update on the mission, Chandrayaan-1 will use several electromagnetic wavelengths - visible, near infrared, microwave, X-ray - to map the Moon’s minerals in "unprecedented", high resolution, and study lunar geology and geochemistry.
Chandrayaan-1 will analyse geological, mineralogical and topographical aspects of the lunar surface in unprecedented detail, study the vertical distribution of crustal material, investigate the processes that led to the formation of craters, maria (false seas) and basins on the Moon, explore space weathering processes, that result from the interaction of the solar wind and cosmic rays with the Moon’s surface.
For the first time the Indian lunar mission will produce three dimensional maps of regions of particular scientific interest at high spatial resolution (5 to 10 mts).
Describing Chandrayaan-1 as a "special mission", the European Space Agency said "although missions have collected lunar samples in the past to analyse later on ground, the role of remote sensing of the lunar surface is gradually increasing. Direct, in-situ exploration of the Moon, particularly by the Apollo, Luna, and Lunar Prospector missions have provided a considerable amount of data of the lunar surface which gave us an insight into the processes responsible for lunar origin and evolution. Nevertheless, there are many aspects, such as the global mineralogical composition, size and structure of the Moon, that require further study from orbit using remote-sensing techniques."
Accommodating 11 instruments on board, Chandrayaan-1 will help answer these questions from orbit, by collecting global surface composition data to
understand the formation and evolution of lunar crust and the processes that
have modified it during its history.
Describing Chandrayaan-1 as a precursor for future space missions, scientists at the ESA hope that Chandrayaan-1’s objectives will be of great value for future missions to the Moon, Mercury and other bodies in the solar system which do not have an atmosphere. It will open up ample possibilities for comparative planetology studies.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment